QM/MM studies of the enzyme-catalyzed dechlorination of 4-chlorobenzoyl-CoA provide insight into reaction energetics.
نویسندگان
چکیده
The conversion of 4-chlorobenzoyl-CoA to 4-hydroxybenzoyl-CoA catalyzed by 4-chlorobenzoyl-CoA dehalogenase is investigated using combined QM/MM approaches. The calculated potential of mean force at the PM3/CHARMM level supports the proposed nucleophilic aromatic substitution mechanism. In particular, a Meisenheimer intermediate was found, stabilized by hydrogen bonds between the benzoyl carbonyl of the ligand and two backbone amide NHs at positions 64 and 114. Mutation of Gly113 to Ala significantly increases the barrier by disrupting the hydrogen bond with the Gly114 backbone. The formation of the Meisenheimer complex is accompanied by significant charge redistribution and structural changes in the substrate benzoyl moiety, consistent with experimental observations. Theoretical results suggest that the reaction rate is limited by the formation of the Meisenheimer complex, rather than by its decomposition. A kinetic model based on the calculated free energy profile is found to be consistent with the experimental time course data.
منابع مشابه
A QM/MM study of a nucleophilic aromatic substitution reaction catalyzed by 4-chlorobenzoyl-CoA dehalogenase.
Calculated using a QM/MM method, the free energy profile for the conversion of 4-chlorobenzoate to 4-hydroxybenzoate catalyzed by 4-chlorobenzoyl-CoA dehalogenase indicates the existence of a stable Meisenheimer complex.
متن کاملRaman evidence for Meisenheimer complex formation in the hydrolysis reactions of 4-fluorobenzoyl- and 4-nitrobenzoyl-coenzyme A catalyzed by 4-chlorobenzoyl-coenzyme A dehalogenase.
4-Chlorobenzoyl-coenzyme A (4-CBA-CoA) dehalogenase catalyzes the hydrolytic dehalogenation of 4-CBA-CoA to 4-hydroxybenzoyl-CoA by using an active site Asp145 carboxylate as the nucleophile. Formation of the corresponding Meisenheimer complex (EMc) is followed by chloride ion expulsion to form arylated enzyme (EAr). The EAr is then hydrolyzed to product. In this paper, we report the kinetics f...
متن کاملThe active site dynamics of 4-chlorobenzoyl-CoA dehalogenase.
A molecular dynamics study was performed to compare the differences in the active-site dynamics of the wild-type and W137F mutant enzymes of 4-chlorobenzoyl-CoA dehalogenase. Only in the wild-type simulation are conformations formed between the catalytic Asp-145 and 4-chlorobenzoyl-CoA, which resemble the ab initio calculated gas-phase transition-state geometry. In the W137F simulation, the hyd...
متن کاملComputational Insights into an Enzyme-Catalyzed [4+2] Cycloaddition
The enzyme SpnF, involved in the biosynthesis of spinosyn A, catalyzes a formal [4+2] cycloaddition of a 22-membered macrolactone, which may proceed as a concerted [4+2] Diels-Alder reaction or a stepwise [6+4] cycloaddition followed by a Cope rearrangement. Quantum mechanics/molecular mechanics (QM/MM) calculations combined with free energy simulations show that the Diels-Alder pathway is favo...
متن کاملEvidence for electrophilic catalysis in the 4-chlorobenzoyl-CoA dehalogenase reaction: UV, Raman, and 13C-NMR spectral studies of dehalogenase complexes of benzoyl-CoA adducts.
This paper reports on the mechanism of substrate activation by the enzyme 4-chlorobenzoyl coenzyme A dehalogenase. This enzyme catalyzes the hydrolytic dehalogenation of 4-chlorobenzoyl coenzyme A (4-CBA-CoA) to form 4-hydroxybenzoyl coenzyme A (4-HBA-CoA). The mechanism of this reaction is known to involve attack of an active site carboxylate (Asp or Glu side chain) at C(4) of the substrate be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 126 42 شماره
صفحات -
تاریخ انتشار 2004